ملف المستخدم
صورة الملف الشخصي

يسرى عبد محمد

إرسال رسالة

التخصص: هندسه الحاسبات

الجامعة: التكنولوجية

النقاط:

4.5
معامل الإنتاج البحثي

الخبرات العلمية

الأبحاث المنشورة

Virtual Local Area Network Performance Improvement Using Ad Hoc Routing Protocols in a Wireless Network

المجلة: Computers

سنة النشر: 23

تاريخ النشر: 2023-01-28

Wireless Communication has become one of the most popular types of communication networks because of the many services it provides; however, it has experienced several challenges in improving network performance. VLAN (Virtual Local Area Network) is a different approach which enables a network administrator to create a logical network from a physical network. By dividing a large network into smaller networks, VLAN technology improves network efficiency, management, and security. This study includes VLAN for wireless networks with mobile nodes integration. The network protection was improved by separating the connections and grouping them in a way that prevents any party from being able to contact unauthorized stations in another party using VLAN. VLAN demonstrated restricted access to private server data by managing traffic, improving security, and reducing levels of congestion. This paper investigates the virtual local area network in a wireless network with three ad hoc routing protocols in a number of different scenarios, using the Riverbed Modeler simulation, which was used as a simulation program in this study. It was found from the investigation process that adopting VLAN technology could reduce delay and data of the network and considerably lower throughput, which is a major drawback of VLAN. Ad hoc routing algorithms, including AODV (Ad Hoc On-Demand Distance Vector), DSR (Dynamic Source Routing), and OLSR (Optimized Link State Routing) routing protocols, were used to improve the delay and throughput of the network. Routing methods with VLAN were tested across the WLAN to obtain the best throughput gain performance. The findings also revealed that these ad hoc routing protocols improved the Wireless Sensor Network performance as an additional investigation for the improvement of any network’s delay and throughput. © 2023 by the authors.

CONTROLLING WATER LEVEL BY USING MODIFIED MODEL FREE ADAPTIVE CONTROLLER

المجلة: Journal of Engineering and Sustainable Development

سنة النشر: 23

تاريخ النشر: 2023-05-01

This paper investigates a simple mathematical model for a water level system, which consists of a DC motor (water pump), and a Speed to Height transformation block, that relates the speed of the motor, to the height of the water level. The input signal is the applied voltage to the armature of the DC motor, while the output signal is the rotational speed of the shaft. A simple modified model-free adaptive controller is suggested, to control the level of water, by adjusting the rate of the incoming water flow to the container, by changing the speed of the water pump, that fills the container. The suggested controller consists of a conventional model free adaptive controller, combined with the proportional integral derivative controller. The parameters of the controller are tuned using two methods. The overall controlled water level system is simulated through MATLAB R2015a software. The results show the efficiency of the suggested controller, when compared to the tuned PID and the MFAC, due to its least fluctuation peak, fast response with a small settling time, and zero steady-state error.

Dual stage cascade controller for temperature control in greenhouse

المجلة: Bulletin of Electrical Engineering and Informatics,

سنة النشر: 23

تاريخ النشر: 2023-02-01

In recent years, electric vehicles have garnered significant attention due to their environmental and economic advantages compared to conventional vehicles, including reduced emissions and lower fuel costs. This study proposes an optimal fractional-order PID (FOPID) controller to regulate electric vehicle (EV) speed. The FOPID controller is advantageous due to its ability for stabilizing the system, managing parameter variations, and mitigating potential disturbances. The tuning of this controller's gains is achieved through an intelligent Ant Colony Optimization (ACO) algorithm. The selection of the gain values is strategically based on minimizing error, thereby ensuring a robust system response without overshoot or undershoots. The performance of the proposed controller is analyzed and compared to a classical PID controller for demonstrating its superior performance. Simulation results illustrate the efficiency of the proposed controller, which exhibits no fluctuation or oscillation in its response (zero overshoot) and fast settling and rise times of 0.0476 and 0.0297, respectively. By using the optimal gains determined by the smart ACO, the proposed controller achieves a satisfactory and robust system response in controlling EV speed. © 2023 Lavoisier. All rights reserved.